MENTORSHIP STRATEGIES TO ACTIVATE MENTEES’ INVOLVEMENT IN EDUCATION: MORAL FRONTIERS

Akbar Nikkhah
Department of Animal Sciences
Faculty of Agricultural Sciences
University of Zanjan, Zanjan, 313-45195 Iran
nikkhah@znu.ac.ir

ABSTRACT

Education is the foremost life affair. Education is not a single approach but an integrated multidisciplinary science that is central to the wholeness and integrity of global science and technology research development. Creating elite upcoming generations may be accomplished only through mentoring for active learners’ involvement in the sophisticated education process. Active two-way mentor-mentee education has been often elusive in practice. The objective of this article is to design and appraise postmodern management strategies to establish innovative mentorship policies for mentees active contributions to lower and higher science and technology edification.

This research was conducted using inductive and deductive reasoning strategies to analyze knowledge and insight collected, intuited and synthesized. Inferences were made on how to pragmatically establish mentorship policies for active mentees involvement throughout the sophisticated education progression. Theories developed were formulated using librarial and empirical analyses methods. Elite-generating education programs as opposed to ineffective elite-discovery plans are found to determine the success of science and technology education systems in boosting science-based economies. Education arts encompass postmodern mentorship strategies for active mentees involvement in education. Imagining science as a circle, findings and discoveries can only contribute to its core or the insignificant central point. What shape morality including mentorship for active mentees participation in the education development process are the surroundings of the central core or the essentialities maintaining an integrated circular shape. Without such dense environs, the circle would have no essence, wholeness and integrity, thus becoming a line. However, even with the central hub being even as infinitesimal as an invisible point, the circle will still remain a circle. This definition represents moral frontiers of the novel mentorship programs. Findings establish that without moral commitments in postmodern mentorship programs, involving vigorous and active mentees partaking in the education path, science and technology edification (defined as circle) will encounter enormously serious challenges in creating elite upcoming generations for viable physical and mental human health in the new era.

Field of Research: Mentorship, economy, education, morality, STEM.

1. Introduction

Education is considered as the foremost life business and an integrated multidisciplinary science (Nikkhah, 2013; Alberts, 2013). Education is central to the integrity of global science and technology development and expansion. Generating elite-producing upcoming generations can be enabled through mentoring for active learners’ involvement in education. Such a process itself needs appropriate edification. Two-way mentor-mentee education remains elusive in practice (Nikkhah, 2012a). The objective of this policy-making strategic article, therefore, was to design and appraise frontier postmodern management strategies to establish innovative mentorship policies for mentees active participation in lower and higher science and technology edification.
2. Research Methodologies

This research was carried out using inductive and deductive reasoning strategies to analyze knowledge and insight that were collected, intuited and synthesized. Inferences were made on how to pragmatically establish mentorship policies for active mentees involvement throughout the sophisticated education progression. Theories developed were formulated using librarial and empirical analyses methods. These were accomplished via philosophical postmodern analyses, modern integrative reasoning, pragmatic theory development, and interdisciplinary critiques of the present thoughts and policies towards optimum prospective strategies. The concept of ‘motivating mentees involvement in education and research evaluation and policy making was additionally established for further dissemination and expansion in academia and the industry. The methodology involved library and theoretical research integrated with observational and empirical thoughts modeling.

3. Moral Education Imagination

Science education in the new era resembles a circle that must be periodically revisited and refined in all directions to be sustained fruitfully and profitably (Nikkah, 2011). Its dynamic structure will enable science and technology education to find multiple ways towards its preset goals. Frequently, science educators are not optimally directed into continual edificational programs. Systematic science mentorship does not end once one becomes an educator. The ongoing edification of educators does not aim to merely keep them up-to-date in science or to solely motivate networking for improved science dissemination. A major global goal is to revisit and refresh mentorship principles and highlight the necessity of persistently developing circular edification approaches. One will only be as much delicate in educating learners as being progressively and delicately educated by others. Governments are increasingly becoming responsible in fostering educator edification initiatives to strengthen economy-boosting science and technology mentorship. Therefore, maintaining edification delicacies requires systematic and persistent multidisciplinary education of science and technology educators.

4. Postmodern Mentorship Philosophies:

Mentees Contributions to Education

In contemplating the centuries of science and technology development and education, knowledge must practically be evolved into insight to progress increasingly. This evolution will increase in impact as knowledge grows more profound. For this fruition-and-evolution process to come about determinedly, creative education must focus on sufficiently simple but sophisticated mentor-mentee negotiative thought-exchange and delineations from the very beginning in the education pathway. There has always been a belief that more junior mentees are too young for certain life lessens usually received by the more senior peers. Such erroneous practices considerably delay mentees’ consciousness in grasping their powerful thought nature and benefiting the community in multiple aspects. Postmodern science mentors must gain distinction in persuading professional confrontational and provoking opinion and view exchanges among mentees and between mentors and mentees. Prevailing silence on mentees’ part and one-way teaching must be discouraged and minimized. Such approaches will allow mentees to envision much earlier what mentors have realized later in life, thus offering mentees with enormous capacities and opportunities to visualize beyond mentors’ pictures of life.

From a postmodern science mentorship perspective, mentors ought to replace impractical teachers. Mentors must vastly welcome and manage challenges from mentees. Challenges have crucial roles
in introducing mentees with integrated pathways of creative and innovative scientific development. This will increase and motivate mentees participation in science and technology education. The resulting pictures will be eagerly prone to future revisions and elaborations as mentees themselves step into such pathways. This systematic and circular education will strengthen science roots in mentees' minds and will advocate a sturdy basis for their involvement in the education development.

5. Optimizing Mentees' Involvement in Education:

Formulation of an EpiScience Theory

Despite elaboration for long times, educational morality has been elusive in global practice (Berry, 2013, Nikkhah, 2011). Morality in education mostly concerns with mentorship procedures and the ethics involved. Morality must be incessantly refined, evolved, and interpreted, such that science can capaciously realize its prevailing roles in improving man's life. With the imaginable tree of creative and innovative science and technology rising as a dynamic circle, by definition, theoretical and applied findings and discoveries can only contribute to its core or the insignificant central point. What characterize morality include the surroundings of the core or the essential obligations and commitments that maintain integrated circular shapes. Without such dense environs, the circle would lose its essence and integrity, and become a straight line. However, even with the central hub being even as infinitesimal as an invisible point, the circle will still remain a circle. This conceptual practical theory demonstrates that creative science would be utterly worthless without its moral elements, even if filled with experimental novelties. This epi-science theory establishes the perception that pragmatic scientific morality involves motivating and expanding mentees involvement in science and technology education and research development.

6. Frontiers of Mentees Involvement in Mentorship

Science in the postmodern era will no longer be judged based on applied and theoretical research accomplishments. The ability and capacity to retain an evolving trend in science will depend on the creation of mentor scientists who are capable of creating more qualified and more creative than own. Those whose quality does not recline in famed teaching and research. Those whose qualifications are encompassed with a distinction in education of pathways in which education involves mentees’ active participation in the mentorship process rather than serving mentees as merely passive listeners. Mentees must simultaneously learn and mentor. Neither is independent (Nikkhah, 2011, 2012a,b).

Mentorship necessitates mentees active involvement in the edification process. Such an active process encompasses a number of applied strategies, as discussed below. The mentorship that involves motivating and directing mentees to influence others significantly and positively is an indefinite art while the futile impractical teaching is a defined job. Teaching is only passing knowledge on to others while mentoring is fostering insights exchange. Teaching educates learning while mentorship helps develop skills to educate others. Teaching gives rise to students who graduate while mentorship creates mentees who remain learners so long as they live. Teaching demands returning to teachers the materials taught while mentoring lead mentees to establish new concepts. Teaching is mostly a one-way communication while mentorship is an environment for thought exchanges. Teaching does not bear questioning teachers while mentoring welcomes challenges from mentees.

Challenges are where mentees practice and perceive true lifetime education. Teaching is concerned with routine fixed hours while mentoring is lifetime contemplation. Teachers are employed by science while mentors employ science. Teaching motivates learning while mentoring generates
mentors who can sustain an ever-improving pathway. Teachers teach science while mentors generate those who can produce science. Teaching is a task while mentorship is a commitment. Teaching’s most significant outcomes are research findings and discoveries while mentorship’s the most important products are actively-involved-in-education mentees as tomorrow’s mentors who produce scientists capable of discovering and not merely memorizing. Teaching further knowledge while mentoring discovers and prepares scientists who can educate others to create insights. Knowledge is an endpoint while insight is a beginning to innovate and create more knowledge. Teaching raises science while mentoring creates pathways to advance science. Teaching is a straight line while mentoring is definitively shaped to form - for instance - a circle that consists of a central point (i.e., findings and discoveries) and the surroundings (i.e., science morality). Teaching simply adds to the literature while mentoring integrates knowledge into quality life strategies. As such, teaching complicates science while mentoring simplifies life. Responsible mentoring rather than teaching of science will be among the main frontiers for accomplishing quality postmodern life. Postmodern mentors will be cognizant of the science entirety, and will create and designate definitive shapes from discoveries and findings. These shapes will grant human life with ongoing peace and ultimate satisfaction.

7. Integrated Analysis

The innovative findings establish the lifetime advantages of motivating and expanding mentees’ active involvements in science and technology education, evaluation, and research. This strategic and pragmatic philosophy helps advance basic and higher systematic education. Mentees influential contributions to optimizing education and research standards have often been lacking or scarce (Hines et al., 2013). Thus, educating and practicing this motivating philosophy is highly demanded. Incorporating mentees perspectives into local and national research proposals, using their critiques and suggestions in improving science education quality, including mentees viewpoints in postmodern education, evaluation and future road-mapping of research directions, and in better linking of academia to the industry will be inevitable. These policies will reflect in timely betterments of the contributions of science in general and mentorship in particular to creating and securing global quality life.

8. Conclusions

This article conceptualized and established that moral commitments to postmodern mentorship programs, involving vigorous mentees partaking in the education path, will greatly help overcome enormously serious challenges in building innovative generations for viable physical and mental human health in the new era.

Acknowledgement

Mentors are acknowledged for priceless dedication towards mentees’ evolution into lifetime educators for quality life.

References


